

Segmenting Words in Two Languages: Cue Weighting of Prosodic vs. Statistical Information in English and Cantonese

Helen Shiyang Lu^{*}, Janet F. Werker, Alexis K. Black

University of British Columbia

- Language learners can use both statistical cues (e.g., syllable transition probabilities) and prosodic cues (e.g., stress patterns) to segment speech ¹⁻⁴
- As learners gain experience with a language, they adjust their reliance on different segmentation strategies ⁵
- Learners of languages with predominant stress patterns in words (e.g., English and German) tend to prefer stress-based prosodic cues when these conflict with statistical cues ⁶⁻⁸
- Some languages (e.g., Cantonese) do not have a predominant stress pattern in multisyllabic words, thus making this type of prosodic cues less informative for word segmentation
- Bilinguals exposed to two typologically distinct languages must navigate

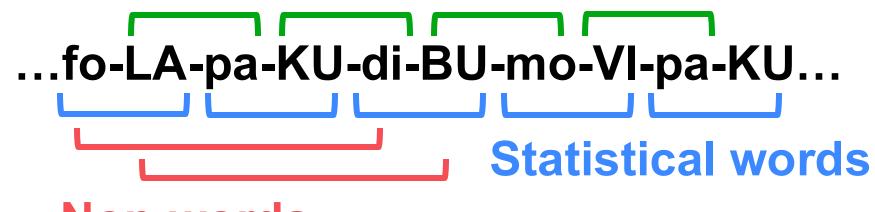
Current Study

- Compared English monolinguals and Cantonese-English bilinguals in word segmentation tasks conflicting statistical and prosodic cues – one in English and one in Cantonese context
- In addition to an explicit recognition task, we also used pupillometry measures
 - Larger pupil dilation at test shows greater surprisal in response to unexpected or unfamiliar words
- Pupil entrainment in training reveals alignment with statistical vs. prosodic cues
- Entrainment in training has been shown to predict

competing segmentation cues

test performance⁸

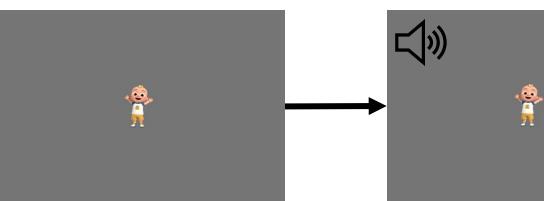
Methods

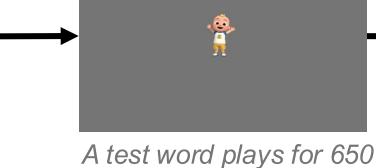

<u>Stimuli</u>

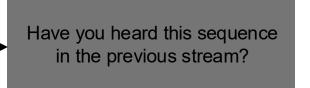
- For each context, four disyllabic words were created from
- English syllables : vi, pa, ku, mo, fo, la, di, bu
- Cantonese syllables: caa2, ge6, je2, ngo3, wu5, zi4, zo1, zyu5
- Stressed syllables were 6 dB
 louder than unstressed syllables

Familiarization (3 minutes)

 Participants watched an aquarium video while listening to a continuous speech stream, with 3-second audio ramps at the edges


Prosodic words




Non-words

Test Phase (3 * 12 trials)

- Half of the statistical and prosodic words were matched in frequency ⁹
- All words were presented without stress

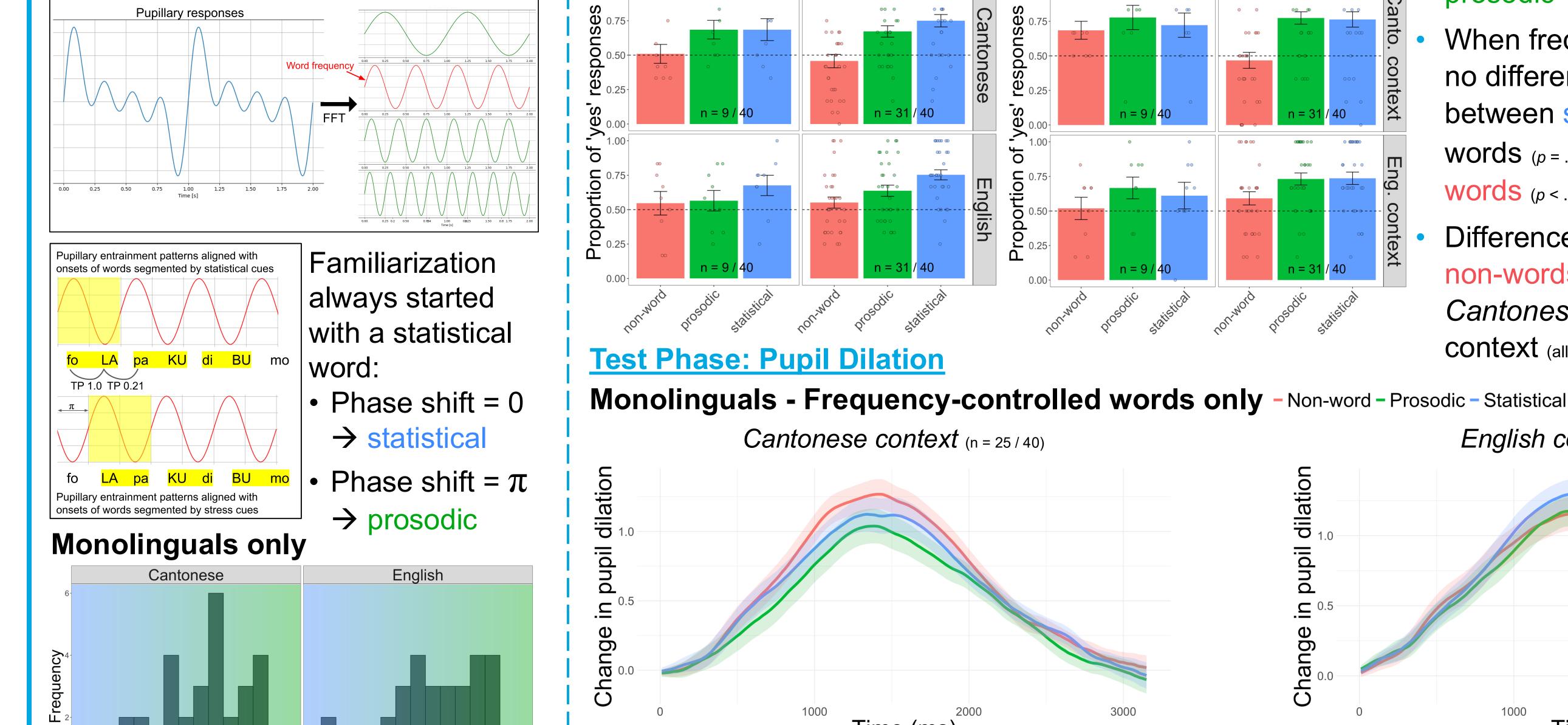
A visual target occurs; Participant accumulates 1-s baseline looking

occurs;A test word plays for 650umulatesms, and the visual targetokingremains for another 2.5 s

Participant answers with a button box

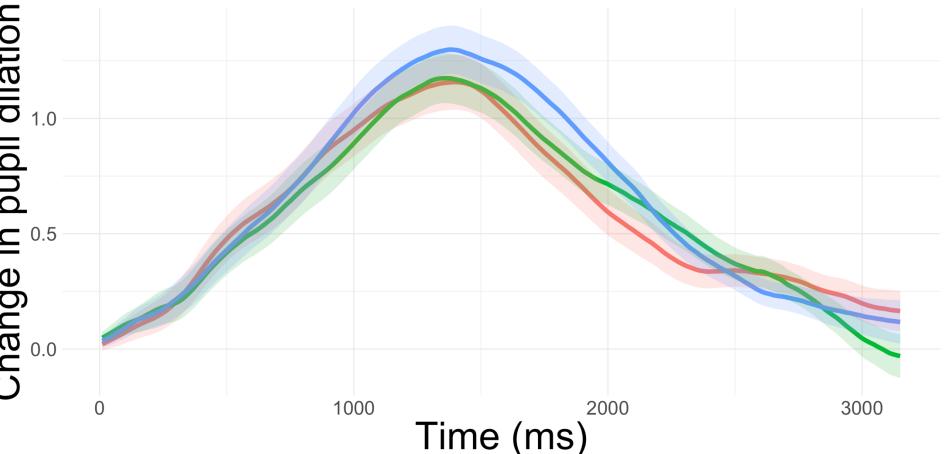
Pre-processing: Pupillary data from both phases were pre-processed with methods adapted from prior research ^{8,10}

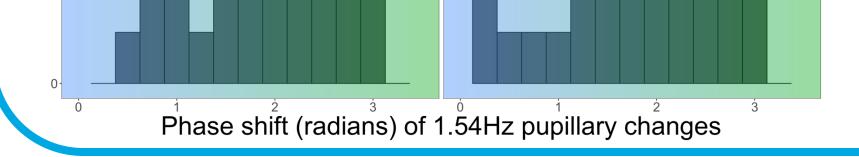
Preliminary Results


Familiarization: Pupil Entrainment Transforming pupillary data to phase shift radians for each participant

Test Phase: Recognition							
All Test Words							
	Bilingual			Monolingual			
1.00-	۰	•	0	0 00	· •	0 0000 0000	

Frequency-controlledBilingualMonolingual········


Monolinguals only


 Across all words, statistical > prosodic > non-words (p < .001 for both)

- When frequency was controlled, no differences were found between statistical and prosodic words (p = .919) but prosodic > nonwords (p < .001)
- Differences between prosodic and non-words were larger in the *Cantonese* than in the *English* context (all words: p = .007; freq-ctrl words: p = .01)

English context (n = 26 / 40)

Time (ms)

Pupil dilation for non-words > prosodic

between 770 to 1900 ms after word onset

No differences were found in pupil dilation across word types

Scan for poster and references

Summary: English monolinguals showed greater familiarity with prosodic words than non-words, especially in the Cantonese context, suggesting successful segmentation of the stream. However, data do not demonstrate a clear preference for either prosodic or statistical segmentation strategies. Ongoing analyses will explore whether cue reliance shifts over the course of familiarization.

THE UNIVERSITY OF BRITISH COLUMBIA

References

1) Saffran, J. R., Newport, E. L., & Aslin, R. N. (1996). Word segmentation: The role of distributional cues. Journal of Memory and Language, 35(4), 606–621.

- 2) Choi, D., Batterink, L. J., Black, A. K., Paller, K. A., & Werker, J. F. (2020). Preverbal infants discover statistical word patterns at similar rates as adults: Evidence from neural entrainment. Psychological Science, 31(9), 1161-1173.
- 3) Matzinger, T., Ritt, N., & Fitch, W. T. (2021). The influence of different prosodic cues on word segmentation. Frontiers in Psychology, 12, 622042.
- 4) Curtin, S., Mintz, T. H., & Christiansen, M. H. (2005). Stress changes the representational landscape: Evidence from word segmentation. Cognition, 96(3), 233-262.
- 5) Thiessen, E. D., & Saffran, J. R. (2007). Learning to learn: Infants' acquisition of stressbased strategies for word segmentation. Language Learning and Development, 3(1), 73– 100.
- 6) Thiessen, E. D., & Saffran, J. R. (2003). When cues collide: Use of stress and statistical cues to word boundaries by 7- to 9-month-old infants. Developmental Psychology, 39(4), 706.

- 7) Marimon, M., Langus, A., & Höhle, B. (2024). Prosody out-weighs statistics in 6-month-old German-learning infants' speech segmentation. Infancy, 29(5), 750–770.
- 8) Marimon, M., Höhle, B., & Langus, A. (2022). Pupillary entrainment reveals individual differences in cue weighting in 9-month-old German-learning infants. Cognition, 224, 105054.
- 9) Aslin, R. N., Saffran, J. R., & Newport, E. L. (1998). Computation of conditional probability statistics by 8-month-old infants. *Psychological Science*, 9(4), 321–324.
- 10)Mathôt, S., & Vilotijevíc, A. (2023). Methods in cognitive pupillometry: Design, preprocessing, and statistical analysis. Behavior Research Methods, 55(6), 3055–3077.